Raghav Kansal
Raghav Kansal
Home
Publications
Highlights
All
Presentations
Highlights
All
Projects
Awards
CV
1
JetNet: A Python package for accessing open datasets and benchmarking machine learning methods in high energy physics
JetNet is a Python package that aims to increase accessibility and reproducibility for machine learning (ML) research in high energy …
Raghav Kansal
,
Carlos Pareja
,
Javier Duarte
PDF
Cite
Code
Project
Do graph neural networks learn traditional jet substructure?
At the CERN LHC, the task of jet tagging, whose goal is to infer the origin of a jet given a set of final-state particles, is dominated …
Farouk Mokhtar
,
Raghav Kansal
,
Javier Duarte
PDF
arXiv
Cite
Project
Poster
Particle Cloud Generation with Message Passing Generative Adversarial Networks
Introduces the message-passing generative adversarial (MPGAN) model and JetNet dataset. We found the physics-informed MPGAN model outperformed all existing point-cloud GANs in simulating high momentum jets.
Raghav Kansal
,
Javier Duarte
,
Hao Su
,
Breno Orzari
,
Thiago Tomei
,
Maurizio Pierini
,
Mary Touranakou
,
Jean-Roch Vlimant
,
Dimitrios Gunopulos
PDF
arXiv
Cite
Code
Dataset
Project
Particle Graph Autoencoders and Differentiable, Learned Energy Mover's Distance
Autoencoders have useful applications in high energy physics in anomaly detection, particularly for jets - collimated showers of …
Steven Tsan
,
Raghav Kansal
,
Anthony Aportela
,
Daniel Diaz
,
Javier Duarte
,
Sukanya Krishna
,
Farouk Mokhtar
,
Jean-Roch Vlimant
,
Maurizio Pierini
PDF
arXiv
Cite
Project
Project
Poster
Explaining machine-learned particle-flow reconstruction
Developed a graph neural network model to reconstruct particle collisions and interpreted the results using explainable AI techniques.
Farouk Mokhtar
,
Raghav Kansal
,
Daniel Diaz
,
Javier Duarte
,
Joosep Pata
,
Maurizio Pierini
,
Jean-Roch Vlimant
PDF
arXiv
Cite
Project
Project
Poster
Graph Generative Adversarial Networks for Sparse Data Generation in High Energy Physics
We develop a graph generative adversarial network to generate sparse data sets like those produced at the CERN Large Hadron Collider …
Raghav Kansal
,
Javier Duarte
,
Breno Orzari
,
Thiago Tomei
,
Maurizio Pierini
,
Mary Touranakou
,
Jean-Roch Vlimant
,
Dimitrios Gunopulos
PDF
arXiv
Cite
Code
Project
Cite
×